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The glass transition behaviours of a series of poly(2,6-dimethylphenylene ethers) with various molecular 
weights and their blends with polystyrene have been studied. The data are analysed according to the 
Fox-Flory equation (M, dependence) and the Gordon-Taylor equation (composition dependence). A more 
rigorous treatment according to the theory developed by Kanig is presented and data of polystyrene- 
poly(vinyl methyl ether) blends, as well as polystyrene-poly(methyl vinylether) blends which do not obey the 
Gordon-Taylor equation, are discussed in the framework of this theory. The theory allows the estimation of 
the energy required to separateA-B contacts. 

(Keywords: glass transition; polystyrene--poly(2,6-dimethylphenylene ether) blends; polystyrene-poly(vinyl methyl ether) 
blends; free-volume concept; Kanig theory) 

INTRODUCTION 

The composition dependence of the glass transition 
temperature Tg of many copolymers can be described by 
an equation first developed by Gordon and Taylor1: 

T~ WAT'A + KWBT'B - (1) 
WA + KWB 

where WA, B are the weight fractions of the components. 
The constant K is given by the ratio of the changes in 
the expansion coefficient A~B/A~tA, where A~ i = ~1 -~g,  or 
the corresponding change in the heat capacities at T~. 
This equation has also been used to describe the 
composition dependence of Tg in miscible polymer 
blends. Several systems like polystyrene-poly(2,6- 
dimethylphenylene ether) (PS/PPE) can be described by 
equation (1), while the data for other systems like 
polystyrene-poly(vinyl methyl ether) (PS/PVME) are 
not in agreement with equation (1). 

Several modifications of equation (1) have been 
published to describe the Tg behaviour of more complex 
systems involving strong intermolecular interactions like 
in polymers with electron donor/acceptor interactions or 
hydrogen bonds. A very common approach is the Kwei 
equation 2: 

Tg - WATsA + KwnTgn t- qWAW a (2) 
WA + Kw B 

According to Kwei q depends on the strength of the 
interaction. Another approach 3 to describe the Tg of 
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Alegre, RS, Brazil 
:~ To whom correspondence should be addressed 

blends uses the Gordon-Taylor equation (1) as the first 
factor (linear in the concentration) of a series expansion, 
while higher terms involve quadratic (as in equation (2)) 
and cubic terms of the composition. 

A more fundamental approach to describe the 
molecular-weight dependence of the glass transition 
temperatures of homopolymers and the composition 
dependence of copolymers and polymer/plasticizer mix- 
tures has been developed by Kanig 4. Apparently his 
approach, based on thermodynamic considerations, has 
been overlooked by many authors. In the following a 
brief discussion of Kanig's attempt will be given. 

Molecular-weight dependence 
In 1950 Fox and Flory 5 described the glass tran- 

sition temperature as a state of 'iso free volume'. 
According to their description the molecular-weight 
dependence of Tg can be described by: 

T g = a - b / P .  (3) 

where a is T 8 at infinite chain length Pn and b is a constant. 
This equation fails for very low molecular weights. Kanig 
and Ueberreiter 6'7 showed that an equation of the form: 

1iTs = m + niP, (4) 

is able to describe the molecular-weight dependence of 
Tg down to dimers. This equation could be derived by 
Kanig along the following lines. 

A polymer melt above Tg is considered as a saturated 
mixture of polymer chains with holes in thermodynamic 
equilibrium s . This saturated solution is treated according 
to the thermodynamics of mixing. It is assumed that the 
interactions between molecules are weak dispersive 
forces; thus it cannot be expected that systems with strong 
interactions (i.e. Coulombic forces) can be described with 
this approach. In addition Kanig proposed that the 
interaction energy is directly proportional to the contact 
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Figure 1 Schematic representation of the distinction between the 
vibrational free volume and the hole free volume 

surface area between segments, an approach used earlier 
by Huggins 9 and in the mean-field lattice gas theory '° 
to describe the phase behaviour of multicomponent 
mixtures. The thermodynamic equilibrium considerations 
are valid down to the glass transition temperature. Below, 
the material is frozen, and no thermodynamic equilibrium 
can be reached. Thus T s is the lower boundary for which 
a thermodynamic equilibrium theory for a polymer melt 
can be applied. 

According to a concept originally developed by 
FrenkeP' the free volume in a liquid is separated into 
two parts: 

(a) A continuous part, given by the expansion of the 
polymer by the chain due to the increasing vibrations of 
the atoms around their mean positions with temperature. 
This part is given by the specific vibration free volume 
Vr2, which increases with temperature according to the 
expansion coefficient of the glass. VrM is the vibration free 
volume of a monomer unit within the chain: 

Vf2 = 2VfE + ( P -  2)VfM 

where P=degree of polymerization and VfE=specific 
vibration volume of an end group. 

(b) A discontinuous part, given by the holes, with 
specific hole volume Vf,. Below T~ the contribution of 
the holes to the specific volume of the material does not 
change. Above Tg the number of holes increases. 

The differentiation between the two parts is shown in 
Figure 1. 0f,,2 are the corresponding fractions of the 
vibrations and the holes to the overall free volume: 

N1,2Vfl,2 
Of 1,2 --  (5) 

N1Vfl + N2Ve2 

where N1 = number of holes and N2 = number of chain 
molecules. 

For the limit of T v Kanig derived the following 
equation: 

1 RV~', 1 R( ln  Of*, + 0~'2) 
- ( 6 )  

T8 .~*a* v *  * , W'f 2~MM--fM ion 0f2AMM 

This equation has the same form as equation (4). The 
asterisks in equation (6) indicate that these quantities are 
constants for a given polymer at T v An important 
conclusion from Kanig's work is that the fraction of holes 
(O*,) from the total free volume at Tg is about 0.64, while 

the fraction of the vibration free volume (O~'2) is 0.36. 
These contributions were assumed to be independent of 
the molecular weight and of the molecular structure. Thus 
Tg is characterized by a constant ratio of hole volume to 
vibration free volume of 2:1. According to this treatment 
T, is not characterized by the same iso free volume, 
independent of the molecular structure of the polymer, 
but by a state where the volume of the holes Nx Vet just 
has the critical value of 2N2Vf2. This definition gives a 
value for the hole free volume at T, close to the average 
value for many polymers according to Williams, Landel 
and Ferry '2 (0.0235 compared to 0.025). This different 
definition of the glass transition state can explain the 
rather large scatter of the 'iso free volume' data at T v 

In a later paper '3 Kanig used the more common 
terminology, where only the contribution of the holes is 
defined as the 'free volume'. The two quantities are 
interrelated according to: 

Of '  ~ o,a  (7) 

where a is a geometric parameter, which is related to the 
specific interacting surfaces of holes and monomer 
segments 0,,  2v = OL2/V1, 2, according to: 

V V a = O1/O 2 (8) 

The quantity * AMM, a standard free enthalpy, is 
material-dependent. It is a direct measure of the affinity 
between chain molecules. A* M is the standard free 
enthalpy to generate one mole of holes. For high degrees 
of polymerization A*u is obtained from equation (6) 
according to: 

A*M=O.664RT ~ (9) 

i.e. the glass transition temperature is a direct measure 
of the affinity between chain molecules. 

In the later paper 13, Kanig related the glass transition 
to the enthalpy AH*, which is required to generate one 
mole of holes in a polymer melt where holes are already 
present: 

An* 
T, = (10) 

R(ln O* +O*) 

The glass transition of copolymers and blends 
Similar to the ideas given in the previous section, a 

copolymer melt has been treated by Kanig as a saturated 
mixture of holes and chain molecules 4. He considered 
copolymers where segments of two components (A and 
B) are statistically distributed. If there are only weak 
interactions between A and B, the assumption may be 
valid that the mixing entropy (holes with chain of A and 
B) is the same as for the previous case. 

The final equation derived by Kanig is: 

Of 2 (2AA8 --AAA -- ABB) 
, 5  , , , 

(I)fA 
(I)fA R(ln O'1 + q~*2) 

O'22" A f2 I B'B--hA*B) 
(ii)  

R(ln O*, + 0~'2) 

Here (I)fA is the fraction of overall vibration volume 
arising from component A and is given by: 

NAVfA mA 
~fA -- NAVf A + NnVfB - mA + mBK (12) 

where K has the same meaning as in equation (1). Thus 
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~fA is a modified weight fraction. 
Again tp*L2 are material-independent quantities (0.64 

and 0.36 respectively) and A'A, A*B and A*B are 
material-specific quantities describing the standard free 
enthalpy to generate one mole of holes from pure AA, BB 
or AB contacts. 

According to equation (11) a plot of (TgB--T~)/d~fA 
versus ~fA should give a straight line. The slope will be 
zero if A* B is given by the arithmetic mean: 

A~B = (A~A + A'B)~2 (i 3) 

As already discussed by Kanig 4, equation (11) reduces 
to the Gordon-Taylor equation for that special case (high- 
molecular-weight limit). A positive slope corresponds to 
A~B being higher than the arithmetic mean. Equation 
(11) has been successfully applied to copolymers even 
when the Gordon-Taylor equation failed ~4. 

If mixtures of homopolymers are considered, the 
additional small mixing entropy might be neglected and 
the result for copolymers should also be applicable for 
polymer blends, while in the case of polymers plasticized 
with a low-molecular-weight plasticizer additional 
entropic contributions must be taken into account 4. In 
the following, experimental data on PPE and PS/PPE 
blends will be used to test the validity of equations (5)/(3) 
and (11)/(1). 

Blend preparation. Blends of PS and PPE were 
prepared by freeze drying of benzene solutions of the 
appropriate mixtures of the polymers. The samples were 
finally dried under high vacuum at about 60°C to remove 
final traces of solvent. 

D.s.c. measurements and data analysis 
Glass transition temperatures and heat capacities were 

determined using a calibrated Perkin-Elmer DSC-7 
system. Sample pans were filled with 12-18mg of 
homopolymers or blends. The samples were first heated 
above T~ to allow for good thermal contact in the sample 
pan and to remove crystallinity (only for the high- 
molecular-weight samples). Several runs with different 
heating rates were made for each sample. The inflection 
point of the d.s.c, traces was chosen as the heating-rate- 
dependent Tg value. The final Tg values were obtained 
by extrapolation to zero heating rate. The results for the 
blends with PPE of various molecular weights are listed 
in Tables 2-6. The glass transition of the trimer, which is 
a crystalline material, was obtained by quenching the 
molten material with liquid nitrogen. The sample pan 
was then transferred at low temperatures into the d.s.c. 
instrument. For each heating rate the same procedure 
was applied. 

EXPERIMENTAL 

Narrow distributed PPE samples have been prepared to 
study in detail the thermal and linear viscoelastic 
properties of PS/PPE blends. The results of the linear 
viscoelastic measurements are reported elsewhere ls'16. 
All samples were characterized by vapour-pressure 
osmometry (Hitachi-Perkin-Elmer vapour-pressure osmo- 
meter 115) or membrane osmometry (Hewlett-Packard 
high-speed osmometer 502) and size exclusion chroma- 
tography (gel permeation chromatography, g.p.c.). G.p.c. 
data were obtained using a set of styragel columns. The 
system was calibrated with commercially available PS 
standards. The number-average molecular weights for the 
PPEs as determined by g.p.c, in chloroform using 
polystyrene calibration were about 1.5 times the absolute 
values using osmometric methods. 

Sample preparation 
Polystyrene (PS). The polystyrene was obtained by 

standard high-vacuum anionic polymerization techniques 
using s-butyllithium as initiator and cyclohexane as 
solvent. The polymerization temperature was kept at 
about 40°C. The polymerization was terminated by 
adding a small amount of methanol. The polymer was 
precipitated in methanol and dried under high vacuum. 

RESULTS AND DISCUSSION 

The molecular-weight dependence of the glass transition 
temperature of PPE 

In a previous paper the molecular-weight dependence 
of the glass transition temperature of PPE has been 
analysed according to the Fox-Flory equation (3). 
Equation (3) holds down to molecular weights of about 

Table 1 Characterization of the polymer samples 

T~ Sample 
Sample M .  ~ Mw/M.  b (°C) preparation c 

PS 144 000 1.04 103 A 
PPE-00 8 150 4.7 214 Technical grade 
PPE trimer 362 1.0 - 2 0  Direct synthesis 
PPE-1100 1 120 1.1 93 C 
PPE-1200 1 190 1.1 111 C 
PPE-1500 1 500 1.1 127 C 
PPE-2000 1 960 1.2 136 C 
PPE-3100 3 100 1.2 179 B 
PPE-5900 5 900 1.3 200 B 
PPE-36000 36 000 1.4 224 B 
PPE-44000 44 000 1.3 225 B 

a Osmometry  (v.p.o. for M, < 10000) 
b G.p.c. in CHCI a 
c A = anionic polymerization; B = fractionation; C = polymerization of 
2,6-dimethyl-4-bromopheno117,18 

Poly(2,6-dimethyl-4-phenylene ether) (PPE). Samples 
of technical-grade PPE were kindly supplied by BASF. 
Some samples were prepared by phase-transfer-catalysed 
polymerization of 4-bromo-2,6-dimethylphenol according 
to the procedure described by Percec and Miihlbachl 7,18. 
The technical-grade PPE was fractionated by subsequently 
adding small amounts of non-solvent (ethanol) to a 
1 wt% solution of PPE in benzene. The polymer-rich 
phase was collected in a separate flask, diluted and the 
PPE was precipitated in methanol. The characterization 
of the samples is given in Table l. 

Table 2 Glass transition temperatures and heat-capacity changes at 
T K of PS/PPE-44000 mixtures 

Sample PPE Tg Acp 
x =  (wt%) (°C) (J mo1-1 K -1) 

0 0 103 30.4 
5 5 108 30.4 
10 10 113 30.6 
20 20 124 30.8 
30 30 134 31.1 
100 100 225 32.4 
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Table 3 Glass transition temperatures and heat-capacity changes at 
T.  of PS/PPE-5900 mixtures 

Sample PPE T 8 Acp 
x = (wt%) (°C) (J mol-  t K -  t) 

10 10 111 30.6 
20 20 120 30.7 
40 40 135 30.9 
60 60 154 31.0 
80 80 178 31.6 
100 100 200 31.7 

Table 4 Glass transition temperatures and heat-capacity changes at 
T~ of PS/PPE-3100 mixtures 

Sample PPE T s Acp 
x =  (wt%) (°C) (J mol - t  K - t )  

10 10 109 30.5 
20 20 117 30.6 
40 40 130 30.9 
60 60 144 31.2 
80 80 160 31.5 
100 100 179 31.6 

1000. The trimer (M = 362 g mol- 1 ) does not fit equation 
(3). T~ has been determined to be 227°C, and the 
constant b was 1.5 x 105. This value is about twice the 
value reported for PS. In Figure 2 the reciprocal PPE 
glass transition temperatures are plotted versus 1/P, 
according to Kanig's theory (equation (4) or (5)). A 
straight line results including also the trimer. As in the 
case of PS the validity range of equation (4) is apparently 
larger than the Fox-Flory equation. The limiting value 
for infinite molecular weights does not change. From the 
intercept of Figure 2, the free energy A~A is obtained 
(equations (5) and (7)). For PPE the work required to 
separate PPE units and generate one mole of holes 
(energy of dilution) is 2770 J mol- 1. The corresponding 
value for PS is 2060 J mol- 1. 

From the slope of Figure 2 the ratio of the specific free 
volume of the holes and the free volume due to the 
vibration V e l / V f M  is obtained. The value is 0.46 for PS 4 
and 0.72 for PPE*. It has been discussed by Kanig 4 that 
the specific volume of a hole at Tg (V*I) is not a constant 
for a variety of polymers. From the changes in the 
expansion coefficient and the heat capacity at T~ the ratio 
of the specific volumes of the repeating unit V* and the 
hole V*~ at Ts are obtained according to: 

V~'~ R(ln tp* + ~p*) A~* T~ 

These ratios are 9.2 for PS 4 and 4.5 for PPE, Compared 
to other polymers, the value for PPE is rather low, i.e. 
the holes in PPE are rather large. This result is in 
qualitative agreement with the results from Zoller 19, who 
found that in PS/PPE blends the free volume change at 
Tg strongly increases with increasing PPE content. 

To look at the effect of a possible interaction on the 
local packing in the PS/PPE blend the analysis of the 
phenyl group rotation in PS 2° might be used. We have 
shown that the fraction of 'mobile' phenyl groups is not 
influenced by the presence of PPE 21. 

* The calculation for PPE has been performed using the Ag value given 
by Zoller 19, and constant free volume fraction tp.  =0.0235 

In Table 7 the heat-capacity changes of the PPEs at 
Tg are collected. Within experimental error no changes 
down to P, = 9 are observed, while the trimer behaves 
differently. The A% values are in good agreement with 
those reported by Wunderlich 3°, Zoller 19 and Fried 31. 

The composition dependence of the glass transition 
temperature in PS/PPE mixtures 

In Figure 3 the d.s.c, traces of the blend series 
PS/PPE-3100 are shown. As has already been discussed 
in a previous paper 15, the glass transition regions in 
PS/PPE blends are rather narrow if PPEs of narrow 
molecular-weight distribution are used. In contrast, in 
PS/PVME blends, rather broad glass transition regions 
are observed. In Figure 4 the glass transition temperatures 
for all blends with varying PPE molecular weights are 
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Figure 2 Molecular-weight (degree of polymerization) dependence of 
the PPE glass transition temperature according to equations (4) and 
(5); from the intercept T~=227°C 

Table 5 Glass transition temperatures and heat-capacity changes at 
Tg of PS/PPE-1500 mixtures 

Sample PPE Ts Acp 
x = (wt%) (°C) (J mol -  1 K -  1) 

10 10 105 30.5 
20 20 107 30.4 
40 40 112 30.8 
60 60 116 30.8 
80 80 121 31.0 

Table 6 Glass transition temperatures and heat-capacity changes at 
Tg of PS/PPE trimer mixtures 

Sample PPE T I A c  v 
x = (wt%) (°C) (J mol-  1 K -  1) 

10 10 62 35.6 
20 20 39 37.2 
40 40 12 46.1 
60 60 -- 3 55.4 
100 100 - 2 0  58.4 
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TuBe 7 Comparison of A%(B)/A%(A) for PS/PPE and PS/PVME 
blends (A = PS) (ACp in J g-  t K -  l ) 

From Acp(B)/Acp(A) From Eq. (15) 
Blend (d.s.c.) (Gordon-Taylor) 

PS/PPE 
Our data 0.81 0.79 
Prest and Porter T M  0.68 
Kwei 23 0.5 
Schultz 24 0.79 
Fried 2s 0.78 0.76 
From thermal 

expansion P2A°t2/ P 1 A~t 1 
ZolleP 9 0.55 
Sharma 26b and 

Rehage T M  0.9 

PS/PPE trimer a 1.65 4.17 

PS/PVME 2s'29 5.0 

° T, obtained at constant heating rate. No extrapolation to zero heating 
rate 

b AareE value determined 
c A~rs value determined 
d The large difference of the values probably arises from the fact that 

the value obtained directly from the d.s.c, trace is altered by the onset 
of crystallization of the trimer after heating above Tg 

PPE(wt%] 

100 

80 ~ 

/ 
60 

20/ 
J 

/ 

J 

I I I i 
100 125 150 175 

T (°C) 

Figure 3 D.s.c. traces for PS/PPE-3100 mixtures of various compo- 
sitions; heating rate 20 K min- t 

shown. Apparently the deviation from a linear behaviour 
is most pronouned for the PS/PPE trimer blends, where 
the glass transition temperatures are far below a linear 
additive behaviour. Only slight deviations are observed 
for the higher molecular weights. In the following 
an analysis of the T 8 behaviour is given. 

The linearized Gordon-Taylor equation . To test the 
validity range of an equation like that proposed by 
Gordon and Taylor 1, it is quite convenient to look for a 
linearization. Wood 32 and recently Schneider 33 proposed 
the following linearized version of equation (1) (called 
the Wood equation by Fried31): 

Tg - T,A _ K w ~  (14) 
Tga - T, 1 - wB 

Thus a plot of (Tg-TgA)/(TgB--Tg) versus w~/(1--wB) 
has to give a straight line with slope K if the Gordon- 
Taylor equation is applicable. Of course, it is evident 
that the left-hand side of equation (14) is very sensitive 
to experimental errors if Tg, and T,a differ only slightly. 
Additional problems in the use of equation (14) arise 
from the right-hand term. In the usual composition 
ranges, the data are not uniformly distributed along the 
w B / ( 1 - w  D axis. Thus a check on the validity of the 
Gordon-Taylor approach might not be conclusive. The 
second difficulty can be eliminated by using the 
logarithmic form: 

,,,, 
\ T , ,  - T , /  

Using this form a rather unambiguous check on the 
applicability of the Gordon-Taylor equation can be made. 
A plot of log[(Tg- T~) / (T , , -  T,)] versus log[wB/(1 -w , ) ]  
must give a straight line with a slope 1. From the 
intercept K is obtained. 

200 
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Figure 4 Composition dependence of the glass transition temperatures 
of PS/PPE with variable PPE molecular weight: M. (PS)= 144000; 
(V) PS/PPE-44000; (O) PS/PPE-5900; (0 )  PS/PPE-3100; (l-l) 
PS/PPE-1500; (A) PS/PPE trimer 
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Figure 5 Analysis of the composition dependence of PS/PPE glass 
transition temperatures according to the linearized Gordon-Taylor 
equation (15): (V) PS/PPE-44000; (O) PS/PPE-5900; (O) PS/PPE- 
3100; (I-q) PS/PPE-1500; (A) PS/PPE trimer; (x )  data from Prest 
and Porter 2z 

In Figure 5 all T~ data of our PS/PPE blends are 
represented according to equation (15). For all PS/PPE 
blends with P.(PPE)>9 the data fall onto a single 
straight line with slope 1. Included are the Tg data from 
the work of Prest and Porter 22. Especially for the lower 
PPE molecular weights with a Tg not far from PS, the 
small scatter of the data is quite astonishing. From the 
intercept the ratio of the heat-capacity changes of the 
pure homopolymers at Tg should be obtained. As can be 
seen in Table 7, the value obtained directly from d.s.c. 
and the value from Table 5 are in very good agreement. 
These experimental findings indicate that the different 
chain lengths do not change the interaction strength 
between PS and PPE chain segments. It is evident from 
Figure 5 that the PS/PPE trimer blends behave differently 
from the higher molecular weights. Nevertheless a 
'Gordon-Taylor behaviour' with a slope of 1 is observed, 
but the intercept is very much different from the 
'polymers'. The value of AcpB/AcpA obtained from Figure 
5 is 4.7; using the Acp value of PS the corresponding Ac v 
of the trimer is 146 J mol- 1 K-  1. The directly measured 
Acp value at Tg for the trimer is much lower (60J 
mol-1K-1). This lower value can be explained by the 
onset of exothermic crystallization of the trimer after 
passing the glass transition. 

In Figure 6 Tg data from the literature for blends of 
PPE with PS, chlorinated PS and poly(styrene-~- 
methylstyrene) P(S-~MS) are represented according to 
equation (15). In Figure 6a PS/PPE data from Shultz and 
Gendron 24 are shown (PS M,=97200, M./M.= 1.06; 
PPE Mw= 18 500, M,/M~=2.02). The heating rate was 
kept at 20 K min-x; data from the first and second runs 
are shown. Apparently these data show a much larger 

scatter than the data given in Figure 5, but again a linear 
representation with slope = 1 is possible. The value of K 
is the same as from our own data. The data of Fried, 
Karasz and MacKnight 25 for PS/PPE and P(S-co- 
pC1S)/PPE blends are included. They also show 'Gordon- 
Taylor' behaviour (see Table 7 for K values). In Figure 
6b PS/PPE data from Kwei and Frisch 23 for various PS 
molecular weights are shown for a heating rate of 
10 K rain- t and a PPE of rather broad MWD (Mw/M, = 
3.95). For M.(PS)~>2200 all data fit the same line with 
slope 1, while the PS-800 data deviate slightly: This 
deviation might be within experimental error due to a 
broad glass transition region. The value of K obtained 
from these data is around 0.5, a value much lower than 
from the other data. 

In Figure 6c the data of blends of styrene/0t-methyl- 
styrene copolymers with PPE from Shultz 34 are shown 
for two different copolymer compositions. Though the 
number of data points is rather limited, the Gordon- 
Taylor equation is applicable to these data. 

These examples demonstrate that the representation 
of Tg data of miscible polymer blends according to 
equation (15) might be quite useful to decide directly 
whether the Gordon-Taylor equation can describe the 
composition dependence or not. On the other hand, this 
representation also shows how sensitive the Tg data and 
their quantitative interpretation are to experimental 
errors. 

The Kanig equation. In Figure 7 the data for the 
PS/PPE blends are presented according to the result of 
Kanig's theory (equation (11)). For all PPE molecular 
weights horizontal straight lines are obtained. This is 
expected for the special case when A* B is given by the 
arithmetic mean of A*A and A~'B, in agreement with the 
previous statement that equation (i1) reduces to the 
Gordon-Taylor equation for that situation. A cross° 
check can be made from the analysis of the intercept for 
high-molecular-weight PPE/PS blends. The standard free 
enthalpy to generate one mole of holes is 2400 J mol- 1, a 
value which is in good agreement with the arithmetic 
mean (2415 J mol- 1). 

The composition dependence of PS/PVME 
A critical check of Kanig's relation can be made 

for PS/PVME blends, for which the Gordon-Taylor 
approach fails. For this analysis we have used data of 
Halary et al. 28 and of Banks et al. 29. Both sets of Tg data 
were not extrapolated to zero heating rate. A more 
detailed analysis including other data will be given 
elsewhere 35. 

To check again the inadequacy of equation (1), we 
used the logarithmic linearized version (equation (15)). 
The result is shown in F~gure 8. As we expected, no 
straight line with slope 1 (Gordon-Taylor behaviour) is 
found. Surprisingly all the data fall on a straight line with 
slope ,,~ 1.4-1.5. Thus the composition dependence of the 
PS/PVME glass transition temperatures can be given 
empirically by: 

logl  | = log K + b log (16) 
\ Tg. -- Tg,/ 

Rearranged into the form of equation (1), this empirical 
equation gives equation (17), i.e. the compo•tion 
variable enters to a higher power than 1. Of course, in 
both the Kwei equation as well as Kanig's equation for 
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Figure 6 Analysis Of the composition dependence of glass transition 
temperatures according to the linearized Gordon-Taylor equation (15). 
(a) PS/PPE and P(S-pCIS)/PPE blends. Data from Shultz and 
Gendron 2.: (@) first run; (©) second run; 20 K min-1; PS-97200; 
PPE-18500. Data from Fried et al.2S: (I) PS/PPE; (A) 
P(S-pCIS)/PPE. (b) PS/PPE with variable PS molecular weight. Data 
from Kwei and Frisch23: PPE M.=I1000, Mw/M.=3.95; (A) 
PS-37000; (D) PS-10000; (©) PS-2200; (I )  PS-800. (c) P(S-aMS)/PPE 
with variable copolymer composition. Data from Shultz and Young34: 
PPE Mn=18500, M./M.=2.01; (C)) S-ctMS(0.91/0.09)/PPE; (0) 
S-ctM S (0.56/0.44)/PPE 

copolymers the composition enters in linear and quadratic 
terms: 

T, - WbA TgA + K wba T*a (l 7) 
+ 

Because no detailed data of A%(PVME) could be 
obtained from the literature, we used the value obtained 
from the intercept of Figure 8 ( K = 0 . 2 )  to analyse the 
PS/PVME data according to Kanig's relation. The result 
for the data given by Halary 2a is given in Figure 9. 
The data of the blends can be described by a straight 
line within experimental error. From the positive 
slope and from the intercept the values for A~B are 
obtained. This value is about 2000 J mol-1  from both 
slope and intercept, a value that is quite close to that of 
PS and much larger than the arithmetic mean of PS and 
PVME (1700 J mol-1) .  No  straight line is observed if K 
is taken too large (>0.3) .  The reduced weight fractions 
~A are very sensitive to the value of K, if it departs from 
l as is the case for PS/PVME. It has to be discussed how 

the strong negative deviation from linearity of the 
PS/PVME glass transition values can be in agreement 
with an interaction energy A*B that is larger than the 
arithmetic average. Such an interaction would rather 
increase the T~ of the blend. From the analysis according 
to equation (11), we actually obtain a rather high value 
for the work required to separate A-B contacts. Neverthe- 
less these two results are not in contradiction: using 
equation (1) with the value of K obtained from Figure 8 
the calculated Tg data are even below the experimental 
values, i.e. the large gain of the free volume when PVME 
segments become mobile dominates the glass transition 
behaviour of PVME/PS blends. Contrary to this effect 
is the interaction that tends to increase the glass transition 
temperature. This is shown in Figure 10. 

C O N C L U S I O N S  

The analysis of the molecular-weight dependence of the 
glass transition temperatures of PPE from P, = 3 to 370 
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showed the validity of Kanig's relation. A polymer melt 
is considered as a saturated solution of holes and chains. 
To achieve thermodynamic equilibrium a reduction of 
holes with decreasing temperature results. The glass 
transition of various polymers is not described by a free 

140 

120 

,,, 100 

> 
a. 

~ 8o 

I 

~ 60 

40 

/ 
o / 

/ 
ax 

/ 
A 

o / 

20 
I I I I 

0 0.2 0 .4  0.6 0 .8  

PVME 

.0 

Figure 9 Analysis of the composition dependence of PS/PVME glass 
transition temperatures according to the Kanig equation (11). Data 
from Halary et al.2s: (O) PS-35000; (A) PS-233000; heating rate 
5 K min- 1 

o 

D3 
b -  

100 

80 

60 

40 

20 

-20 f 

o 

A 

2'0 I I I i I .'0 6'0 8'o ,oo 
PS (wt~)  

Figure 10 Composition dependence of PS/PVME glass transition 
temperatures: full curve calculated according to the Gordon-Taylor 
equation for K=0.2. Data from Halary et al.28: (©) PS-35000; (A); 
PS-233000; heating rate 5 K min- 1 

2242 POLYMER, 1988, Vol 29, December 



volume that is constant for all polymers. In addition the 
theory allows the determination of the standard free 
energy required to generate one mole of holes in a 
polymer melt. 

Kanig's equation for the composition dependence of 
copolymers has been applied to miscible polymer blends 
of PS and PPE. This equation reduces to the Gordon -  
Taylor equation, if the energy to separate A-B contacts 
is given by the arithmetic mean of the corresponding AA 
and BB energies. It seems that all modifications of the 
Gordon-Taylor  equation given by Kwei 2 or Schneider 
et al. 3 are already included in Kanig's treatment, which 
apparently has been overlooked in the polymer blend 
field 36. 
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Note added in proof 

In the description of the Kanig theory we have used the 
equation for copolymers to describe the glass transition of 
polymer mixtures (equation (11)). According to a 
suggestion by Kanig*, this equation can also be obtained 
easily from the equation he derived for polymer-  
plasticizer mixtures 4 by increasing the plasticizer 
molecular weight. According to this line the mixing 
entropy is taken into account and this approach is more 
straightforward, than just using the equation for 
copolymers. 

* Kanig, G. personal communication, 1988 

POLYMER, 1988, Vol 29, December 2243 


